Entropically driven motion of polymers in nonuniform nanochannels.
نویسندگان
چکیده
In nanofluidic devices, nonuniform confinement induces an entropic force that automatically drives biopolymers toward less-confined regions to gain entropy. To understand this phenomenon, we first analyze the diffusion of an entropy-driven particle system. The derived Fokker-Planck equation reveals an effective driving force as the negative gradient of the free energy. The derivation also shows that both the diffusion constant and drag coefficient are location dependent on an arbitrary free-energy landscape. As an application, DNA motion and deformation in nonuniform channels are investigated. Typical solutions reveal large gradients of stress on the polymer where the channel width changes rapidly. Migration of DNA in several nonuniform channels is discussed.
منابع مشابه
Motion of methanol adsorbed in porous coordination polymer with paramagnetic metal ions.
Molecular motions of methanol adsorbed in 1D nanochannels of pillared-layer coordination polymer with paramagnetic metal ions have been studied by (2)H NMR together with X-ray crystallography.
متن کاملEntropically driven colloidal crystallization on patterned surfaces
We investigate the self-assembly of colloidal spheres on periodically patterned templates. The surface potentials and the surface phases are induced entropically by the presence of dissolved, nonadsorbing polymers. A rich variety of two-dimensional fluidlike and solidlike phases was observed to form on template potentials with both one- and two-dimensional symmetry. The same methodology was the...
متن کاملEffect of Insulated Up and Down Lid Motion on the Heat Transfer of a Lid-Driven Cavity with an attached fin
This study investigates the effect of lid motion on the optimal characteristics a thin rectangular fin attached on the hot wall of a square lid-driven cavity with active vertical walls. The optimal fin position is studied for Richardson numbers of 0.1-10. The effect of mounting a rectangular fin with a thermal conductivity of 1 and 1000 on minimization and maximization of heat transfer through ...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Two Adhesive Sites Can Enhance the Knotting Probability of DNA
Self-entanglement, or knotting, is entropically favored in long polymers. Relatively short polymers such as proteins can knot as well, but in this case the entanglement is mainly driven by fine-tuned, sequence-specific interactions. The relation between the sequence of a long polymer and its topological state is here investigated by means of a coarse-grained model of DNA. We demonstrate that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 83 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2011